Network rewiring is an important mechanism of gene essentiality change
نویسندگان
چکیده
Gene essentiality changes are crucial for organismal evolution. However, it is unclear how essentiality of orthologs varies across species. We investigated the underlying mechanism of gene essentiality changes between yeast and mouse based on the framework of network evolution and comparative genomic analysis. We found that yeast nonessential genes become essential in mouse when their network connections rapidly increase through engagement in protein complexes. The increased interactions allowed the previously nonessential genes to become members of vital pathways. By accounting for changes in gene essentiality, we firmly reestablished the centrality-lethality rule, which proposed the relationship of essential genes and network hubs. Furthermore, we discovered that the number of connections associated with essential and non-essential genes depends on whether they were essential in ancestral species. Our study describes for the first time how network evolution occurs to change gene essentiality.
منابع مشابه
The evolutionary dynamics of the Saccharomyces cerevisiae protein interaction network after duplication.
Gene duplication is an important mechanism in the evolution of protein interaction networks. Duplications are followed by the gain and loss of interactions, rewiring the network at some unknown rate. Because rewiring is likely to change the distribution of network motifs within the duplicated interaction set, it should be possible to study network rewiring by tracking the evolution of these mot...
متن کاملRewiring of transcriptional regulatory networks: hierarchy, rather than connectivity, better reflects the importance of regulators.
Network connectivity has been related to essentiality: Highly connected proteins (hubs) are more important for cell growth and survival. Although this is intuitively reasonable, another way to assess the role of a regulator is to assign it to a level within a "chain-of-command" hierarchy. Here, we analyzed the effects of network rewiring events on transcriptional regulatory hierarchies in two s...
متن کاملDetecting and Describing Dynamic Equilibria in Adaptive Networks
We review modeling attempts for the paradigmatic contact process (or SIS model) on adaptive networks. Elaborating on one particular proposed mechanism of topology change (rewiring) and its mean field analysis, we obtain a coarse-grained view of coevolving network topology in the stationary active phase of the system. Introducing an alternative framework applicable to a wide class of adaptive ne...
متن کاملGene Regulation Network Based Analysis Associated with TGF-beta Stimulation in Lung Adenocarcinoma Cells
Background: Transforming growth factor (TGF)-β is over-expressed in a wide variety of cancers such as lung adenocarcinoma. TGF-β plays a major role in cancer progression through regulating cancer cell proliferation and remodeling of the tumor micro-environment. However, it is still a great challenge to explain the phenotypic effects caused by TGF-β stimulation and the effect of TGF-β stimulatio...
متن کاملA Caenorhabditis elegans Genome-Scale Metabolic Network Model.
Caenorhabditis elegans is a powerful model to study metabolism and how it relates to nutrition, gene expression, and life history traits. However, while numerous experimental techniques that enable perturbation of its diet and gene function are available, a high-quality metabolic network model has been lacking. Here, we reconstruct an initial version of the C. elegans metabolic network. This ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2012